home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (c) 1988 Regents of the University of California */
-
- #ifndef lint
- static char SCCSid[] = "@(#)noise3.c 2.1 11/12/91 LBL";
- #endif
-
- /*
- * noise3.c - noise functions for random textures.
- *
- * Credit for the smooth algorithm goes to Ken Perlin.
- * (ref. SIGGRAPH Vol 19, No 3, pp 287-96)
- *
- * 4/15/86
- * 5/19/88 Added fractal noise function
- */
-
-
- #define A 0
- #define B 1
- #define C 2
- #define D 3
-
- #define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z))
- #define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z))
- #define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z))
- #define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z))
-
- /* hermite */
- #define hpoly1(t) ((2.0*t-3.0)*t*t+1.0)
- #define hpoly2(t) (-2.0*t+3.0)*t*t
- #define hpoly3(t) ((t-2.0)*t+1.0)*t
- #define hpoly4(t) (t-1.0)*t*t
-
- double *noise3(), fnoise3(), frand();
-
- static interpolate();
-
- static long xlim[3][2];
- static double xarg[3];
-
- #define EPSILON .0001 /* error allowed in fractal */
-
- #define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z))
-
-
- double *
- noise3(xnew) /* compute the noise function */
- register double xnew[3];
- {
- extern double floor();
- static double x[3] = {-100000.0, -100000.0, -100000.0};
- static double f[4];
-
- if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2])
- return(f);
- x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2];
- xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1;
- xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1;
- xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1;
- xarg[0] = x[0] - xlim[0][0];
- xarg[1] = x[1] - xlim[1][0];
- xarg[2] = x[2] - xlim[2][0];
- interpolate(f, 0, 3);
- return(f);
- }
-
-
- static
- interpolate(f, i, n)
- double f[4];
- register int i, n;
- {
- double f0[4], f1[4], hp1, hp2;
-
- if (n == 0) {
- f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
- f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
- f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
- f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
- } else {
- n--;
- interpolate(f0, i, n);
- interpolate(f1, i | 1<<n, n);
- hp1 = hpoly1(xarg[n]); hp2 = hpoly2(xarg[n]);
- f[A] = f0[A]*hp1 + f1[A]*hp2;
- f[B] = f0[B]*hp1 + f1[B]*hp2;
- f[C] = f0[C]*hp1 + f1[C]*hp2;
- f[D] = f0[D]*hp1 + f1[D]*hp2 +
- f0[n]*hpoly3(xarg[n]) + f1[n]*hpoly4(xarg[n]);
- }
- }
-
-
- double
- frand(s) /* get random number from seed */
- register long s;
- {
- s = s<<13 ^ s;
- return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0);
- }
-
-
- double
- fnoise3(p) /* compute fractal noise function */
- double p[3];
- {
- double floor();
- long t[3], v[3], beg[3];
- double fval[8], fc;
- int branch;
- register long s;
- register int i, j;
- /* get starting cube */
- s = (long)(1.0/EPSILON);
- for (i = 0; i < 3; i++) {
- t[i] = s*p[i];
- beg[i] = s*floor(p[i]);
- }
- for (j = 0; j < 8; j++) {
- for (i = 0; i < 3; i++) {
- v[i] = beg[i];
- if (j & 1<<i)
- v[i] += s;
- }
- fval[j] = frand3(v[0],v[1],v[2]);
- }
- /* compute fractal */
- for ( ; ; ) {
- fc = 0.0;
- for (j = 0; j < 8; j++)
- fc += fval[j];
- fc *= 0.125;
- if ((s >>= 1) == 0)
- return(fc); /* close enough */
- branch = 0;
- for (i = 0; i < 3; i++) { /* do center */
- v[i] = beg[i] + s;
- if (t[i] > v[i]) {
- branch |= 1<<i;
- }
- }
- fc += s*EPSILON*frand3(v[0],v[1],v[2]);
- fval[~branch & 7] = fc;
- for (i = 0; i < 3; i++) { /* do faces */
- if (branch & 1<<i)
- v[i] += s;
- else
- v[i] -= s;
- fc = 0.0;
- for (j = 0; j < 8; j++)
- if (~(j^branch) & 1<<i)
- fc += fval[j];
- fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
- fval[~(branch^1<<i) & 7] = fc;
- v[i] = beg[i] + s;
- }
- for (i = 0; i < 3; i++) { /* do edges */
- j = (i+1)%3;
- if (branch & 1<<j)
- v[j] += s;
- else
- v[j] -= s;
- j = (i+2)%3;
- if (branch & 1<<j)
- v[j] += s;
- else
- v[j] -= s;
- fc = fval[branch & ~(1<<i)];
- fc += fval[branch | 1<<i];
- fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
- fval[branch^1<<i] = fc;
- j = (i+1)%3;
- v[j] = beg[j] + s;
- j = (i+2)%3;
- v[j] = beg[j] + s;
- }
- for (i = 0; i < 3; i++) /* new cube */
- if (branch & 1<<i)
- beg[i] += s;
- }
- }
-
-